评估¶
要评估你的智能代理的性能,你可以使用 LangSmith 评估。你需要首先定义一个评估器函数来判断智能代理的结果,例如最终输出或轨迹。根据你的评估技术,这可能涉及或不涉及参考输出:
def evaluator(*, outputs: dict, reference_outputs: dict):
# 将智能代理输出与参考输出进行比较
output_messages = outputs["messages"]
reference_messages = reference_outputs["messages"]
score = compare_messages(output_messages, reference_messages)
return {"key": "evaluator_score", "score": score}
type EvaluatorParams = {
outputs: Record<string, any>;
referenceOutputs: Record<string, any>;
};
function evaluator({ outputs, referenceOutputs }: EvaluatorParams) {
// 将智能代理输出与参考输出进行比较
const outputMessages = outputs.messages;
const referenceMessages = referenceOutputs.messages;
const score = compareMessages(outputMessages, referenceMessages);
return { key: "evaluator_score", score: score };
}
要开始使用,你可以使用 AgentEvals 包中的预构建评估器:
创建评估器¶
评估智能代理性能的一种常见方法是将其轨迹(它调用工具的顺序)与参考轨迹进行比较:
import json
# highlight-next-line
from agentevals.trajectory.match import create_trajectory_match_evaluator
outputs = [
{
"role": "assistant",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": json.dumps({"city": "san francisco"}),
}
},
{
"function": {
"name": "get_directions",
"arguments": json.dumps({"destination": "presidio"}),
}
}
],
}
]
reference_outputs = [
{
"role": "assistant",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": json.dumps({"city": "san francisco"}),
}
},
],
}
]
# 创建评估器
evaluator = create_trajectory_match_evaluator(
# highlight-next-line
trajectory_match_mode="superset", # (1)!
)
# 运行评估器
result = evaluator(
outputs=outputs, reference_outputs=reference_outputs
)
import { createTrajectoryMatchEvaluator } from "agentevals/trajectory/match";
const outputs = [
{
role: "assistant",
tool_calls: [
{
function: {
name: "get_weather",
arguments: JSON.stringify({ city: "san francisco" }),
},
},
{
function: {
name: "get_directions",
arguments: JSON.stringify({ destination: "presidio" }),
},
},
],
},
];
const referenceOutputs = [
{
role: "assistant",
tool_calls: [
{
function: {
name: "get_weather",
arguments: JSON.stringify({ city: "san francisco" }),
},
},
],
},
];
// 创建评估器
const evaluator = createTrajectoryMatchEvaluator({
// 指定如何比较轨迹。`superset` 将接受输出轨迹作为有效,如果它是参考轨迹的超集。其他选项包括: strict、unordered 和 subset
trajectoryMatchMode: "superset", // (1)!
});
// 运行评估器
const result = evaluator({
outputs: outputs,
referenceOutputs: referenceOutputs,
});
作为下一步,了解更多关于如何自定义轨迹匹配评估器。
LLM 作为评判者¶
你可以使用 LLM 作为评判者评估器,它使用 LLM 将轨迹与参考输出进行比较并输出分数:
import json
from agentevals.trajectory.llm import (
# highlight-next-line
create_trajectory_llm_as_judge,
TRAJECTORY_ACCURACY_PROMPT_WITH_REFERENCE
)
evaluator = create_trajectory_llm_as_judge(
prompt=TRAJECTORY_ACCURACY_PROMPT_WITH_REFERENCE,
model="openai:o3-mini"
)
import {
createTrajectoryLlmAsJudge,
TRAJECTORY_ACCURACY_PROMPT_WITH_REFERENCE,
} from "agentevals/trajectory/llm";
const evaluator = createTrajectoryLlmAsJudge({
prompt: TRAJECTORY_ACCURACY_PROMPT_WITH_REFERENCE,
model: "openai:o3-mini",
});
运行评估器¶
要运行评估器,你首先需要创建一个 LangSmith 数据集。要使用预构建的 AgentEvals 评估器,你需要一个具有以下模式的数据集:
- input:
{"messages": [...]}用于调用智能代理的输入消息。 - output:
{"messages": [...]}智能代理输出中预期的消息历史记录。对于轨迹评估,你可以选择只保留助手消息。
from langsmith import Client
from langgraph.prebuilt import create_react_agent
from agentevals.trajectory.match import create_trajectory_match_evaluator
client = Client()
agent = create_react_agent(...)
evaluator = create_trajectory_match_evaluator(...)
experiment_results = client.evaluate(
lambda inputs: agent.invoke(inputs),
# 替换为你的数据集名称
data="<Name of your dataset>",
evaluators=[evaluator]
)
import { Client } from "langsmith";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { createTrajectoryMatchEvaluator } from "agentevals/trajectory/match";
const client = new Client();
const agent = createReactAgent({...});
const evaluator = createTrajectoryMatchEvaluator({...});
const experimentResults = await client.evaluate(
(inputs) => agent.invoke(inputs),
// 替换为你的数据集名称
{ data: "<Name of your dataset>" },
{ evaluators: [evaluator] }
);