使用子图¶
本指南解释了使用 子图 的机制。子图的一个常见应用是构建 多智能代理 系统。
添加子图时,你需要定义父图和子图如何通信:
设置¶
为 LangGraph 开发设置 LangSmith
注册 LangSmith 以快速发现问题并提高 LangGraph 项目的性能。LangSmith 让你可以使用追踪数据来调试、测试和监控使用 LangGraph 构建的 LLM 应用 — 在 这里 阅读更多关于如何开始的信息。
共享状态模式¶
一个常见的情况是父图和子图通过 模式 中的共享状态键(通道)进行通信。例如,在 多智能代理 系统中,智能代理通常通过共享的 messages 键进行通信。
如果你的子图与父图共享状态键,可以按照以下步骤将其添加到图中:
- 定义子图工作流(下面示例中的
subgraph_builder)并编译它 - 在定义父图工作流时,将编译后的子图传递给
.add_node方法
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
class State(TypedDict):
foo: str
# 子图
def subgraph_node_1(state: State):
return {"foo": "hi! " + state["foo"]}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# 父图
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
- 定义子图工作流(下面示例中的
subgraphBuilder)并编译它 - 在定义父图工作流时,将编译后的子图传递给
.addNode方法
import { StateGraph, START } from "@langchain/langgraph";
import { z } from "zod";
const State = z.object({
foo: z.string(),
});
// 子图
const subgraphBuilder = new StateGraph(State)
.addNode("subgraphNode1", (state) => {
return { foo: "hi! " + state.foo };
})
.addEdge(START, "subgraphNode1");
const subgraph = subgraphBuilder.compile();
// 父图
const builder = new StateGraph(State)
.addNode("node1", subgraph)
.addEdge(START, "node1");
const graph = builder.compile();
完整示例:共享状态模式
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# 定义子图
class SubgraphState(TypedDict):
foo: str # (1)!
bar: str # (2)!
def subgraph_node_1(state: SubgraphState):
return {"bar": "bar"}
def subgraph_node_2(state: SubgraphState):
# 注意这个节点使用的状态键('bar')只在子图中可用
# 并且在共享状态键('foo')上发送更新
return {"foo": state["foo"] + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# 定义父图
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream({"foo": "foo"}):
print(chunk)
- 此键与父图状态共享
- 此键是
SubgraphState的私有键,对父图不可见
import { StateGraph, START } from "@langchain/langgraph";
import { z } from "zod";
// 定义子图
const SubgraphState = z.object({
foo: z.string(), // (1)!
bar: z.string(), // (2)!
});
const subgraphBuilder = new StateGraph(SubgraphState)
.addNode("subgraphNode1", (state) => {
return { bar: "bar" };
})
.addNode("subgraphNode2", (state) => {
// 注意这个节点使用的状态键('bar')只在子图中可用
// 并且在共享状态键('foo')上发送更新
return { foo: state.foo + state.bar };
})
.addEdge(START, "subgraphNode1")
.addEdge("subgraphNode1", "subgraphNode2");
const subgraph = subgraphBuilder.compile();
// 定义父图
const ParentState = z.object({
foo: z.string(),
});
const builder = new StateGraph(ParentState)
.addNode("node1", (state) => {
return { foo: "hi! " + state.foo };
})
.addNode("node2", subgraph)
.addEdge(START, "node1")
.addEdge("node1", "node2");
const graph = builder.compile();
for await (const chunk of await graph.stream({ foo: "foo" })) {
console.log(chunk);
}
- 此键与父图状态共享
- 此键是
SubgraphState的私有键,对父图不可见
不同状态模式¶
对于更复杂的系统,你可能想要定义与父图具有 完全不同模式 的子图(没有共享键)。例如,你可能想要为 多智能代理 系统中的每个智能代理保留私有的消息历史。
如果你的应用是这种情况,你需要定义一个 调用子图的节点函数。这个函数需要在调用子图之前将输入(父)状态转换为子图状态,并在从节点返回状态更新之前将结果转换回父状态。
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
class SubgraphState(TypedDict):
bar: str
# 子图
def subgraph_node_1(state: SubgraphState):
return {"bar": "hi! " + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# 父图
class State(TypedDict):
foo: str
def call_subgraph(state: State):
subgraph_output = subgraph.invoke({"bar": state["foo"]}) # (1)!
return {"foo": subgraph_output["bar"]} # (2)!
builder = StateGraph(State)
builder.add_node("node_1", call_subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
- 将状态转换为子图状态
- 将响应转换回父状态
import { StateGraph, START } from "@langchain/langgraph";
import { z } from "zod";
const SubgraphState = z.object({
bar: z.string(),
});
// 子图
const subgraphBuilder = new StateGraph(SubgraphState)
.addNode("subgraphNode1", (state) => {
return { bar: "hi! " + state.bar };
})
.addEdge(START, "subgraphNode1");
const subgraph = subgraphBuilder.compile();
// 父图
const State = z.object({
foo: z.string(),
});
const builder = new StateGraph(State)
.addNode("node1", async (state) => {
const subgraphOutput = await subgraph.invoke({ bar: state.foo }); // (1)!
return { foo: subgraphOutput.bar }; // (2)!
})
.addEdge(START, "node1");
const graph = builder.compile();
- 将状态转换为子图状态
- 将响应转换回父状态
完整示例:不同状态模式
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# 定义子图
class SubgraphState(TypedDict):
# 注意这些键都不与父图状态共享
bar: str
baz: str
def subgraph_node_1(state: SubgraphState):
return {"baz": "baz"}
def subgraph_node_2(state: SubgraphState):
return {"bar": state["bar"] + state["baz"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# 定义父图
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
def node_2(state: ParentState):
response = subgraph.invoke({"bar": state["foo"]}) # (1)!
return {"foo": response["bar"]} # (2)!
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", node_2)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream({"foo": "foo"}, subgraphs=True):
print(chunk)
- 将状态转换为子图状态
- 将响应转换回父状态
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_2': {'bar': 'hi! foobaz'}})
((), {'node_2': {'foo': 'hi! foobaz'}})
import { StateGraph, START } from "@langchain/langgraph";
import { z } from "zod";
// 定义子图
const SubgraphState = z.object({
// 注意这些键都不与父图状态共享
bar: z.string(),
baz: z.string(),
});
const subgraphBuilder = new StateGraph(SubgraphState)
.addNode("subgraphNode1", (state) => {
return { baz: "baz" };
})
.addNode("subgraphNode2", (state) => {
return { bar: state.bar + state.baz };
})
.addEdge(START, "subgraphNode1")
.addEdge("subgraphNode1", "subgraphNode2");
const subgraph = subgraphBuilder.compile();
// 定义父图
const ParentState = z.object({
foo: z.string(),
});
const builder = new StateGraph(ParentState)
.addNode("node1", (state) => {
return { foo: "hi! " + state.foo };
})
.addNode("node2", async (state) => {
const response = await subgraph.invoke({ bar: state.foo }); // (1)!
return { foo: response.bar }; // (2)!
})
.addEdge(START, "node1")
.addEdge("node1", "node2");
const graph = builder.compile();
for await (const chunk of await graph.stream(
{ foo: "foo" },
{ subgraphs: true }
)) {
console.log(chunk);
}
- 将状态转换为子图状态
- 将响应转换回父状态
完整示例:不同状态模式(两层子图)
这是一个两层子图的示例:父图 -> 子图 -> 孙图。
# 孙图
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START, END
class GrandChildState(TypedDict):
my_grandchild_key: str
def grandchild_1(state: GrandChildState) -> GrandChildState:
# 注意:子图或父图的键在这里不可访问
return {"my_grandchild_key": state["my_grandchild_key"] + ", how are you"}
grandchild = StateGraph(GrandChildState)
grandchild.add_node("grandchild_1", grandchild_1)
grandchild.add_edge(START, "grandchild_1")
grandchild.add_edge("grandchild_1", END)
grandchild_graph = grandchild.compile()
# 子图
class ChildState(TypedDict):
my_child_key: str
def call_grandchild_graph(state: ChildState) -> ChildState:
# 注意:父图或孙图的键在这里不可访问
grandchild_graph_input = {"my_grandchild_key": state["my_child_key"]} # (1)!
grandchild_graph_output = grandchild_graph.invoke(grandchild_graph_input)
return {"my_child_key": grandchild_graph_output["my_grandchild_key"] + " today?"} # (2)!
child = StateGraph(ChildState)
child.add_node("child_1", call_grandchild_graph) # (3)!
child.add_edge(START, "child_1")
child.add_edge("child_1", END)
child_graph = child.compile()
# 父图
class ParentState(TypedDict):
my_key: str
def parent_1(state: ParentState) -> ParentState:
# 注意:子图或孙图的键在这里不可访问
return {"my_key": "hi " + state["my_key"]}
def parent_2(state: ParentState) -> ParentState:
return {"my_key": state["my_key"] + " bye!"}
def call_child_graph(state: ParentState) -> ParentState:
child_graph_input = {"my_child_key": state["my_key"]} # (4)!
child_graph_output = child_graph.invoke(child_graph_input)
return {"my_key": child_graph_output["my_child_key"]} # (5)!
parent = StateGraph(ParentState)
parent.add_node("parent_1", parent_1)
parent.add_node("child", call_child_graph) # (6)!
parent.add_node("parent_2", parent_2)
parent.add_edge(START, "parent_1")
parent.add_edge("parent_1", "child")
parent.add_edge("child", "parent_2")
parent.add_edge("parent_2", END)
parent_graph = parent.compile()
for chunk in parent_graph.stream({"my_key": "Bob"}, subgraphs=True):
print(chunk)
- 我们将状态从子图状态通道(
my_child_key)转换为孙图状态通道(my_grandchild_key) - 我们将状态从孙图状态通道(
my_grandchild_key)转换回子图状态通道(my_child_key) - 我们在这里传递一个函数而不是直接传递编译后的图(
grandchild_graph) - 我们将状态从父图状态通道(
my_key)转换为子图状态通道(my_child_key) - 我们将状态从子图状态通道(
my_child_key)转换回父图状态通道(my_key) - 我们在这里传递一个函数而不是直接传递编译后的图(
child_graph)
((), {'parent_1': {'my_key': 'hi Bob'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b', 'child_1:781bb3b1-3971-84ce-810b-acf819a03f9c'), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b',), {'child_1': {'my_child_key': 'hi Bob, how are you today?'}})
((), {'child': {'my_key': 'hi Bob, how are you today?'}})
((), {'parent_2': {'my_key': 'hi Bob, how are you today? bye!'}})
import { StateGraph, START, END } from "@langchain/langgraph";
import { z } from "zod";
// 孙图
const GrandChildState = z.object({
myGrandchildKey: z.string(),
});
const grandchild = new StateGraph(GrandChildState)
.addNode("grandchild1", (state) => {
// 注意:子图或父图的键在这里不可访问
return { myGrandchildKey: state.myGrandchildKey + ", how are you" };
})
.addEdge(START, "grandchild1")
.addEdge("grandchild1", END);
const grandchildGraph = grandchild.compile();
// 子图
const ChildState = z.object({
myChildKey: z.string(),
});
const child = new StateGraph(ChildState)
.addNode("child1", async (state) => {
// 注意:父图或孙图的键在这里不可访问
const grandchildGraphInput = { myGrandchildKey: state.myChildKey }; // (1)!
const grandchildGraphOutput = await grandchildGraph.invoke(grandchildGraphInput);
return { myChildKey: grandchildGraphOutput.myGrandchildKey + " today?" }; // (2)!
}) // (3)!
.addEdge(START, "child1")
.addEdge("child1", END);
const childGraph = child.compile();
// 父图
const ParentState = z.object({
myKey: z.string(),
});
const parent = new StateGraph(ParentState)
.addNode("parent1", (state) => {
// 注意:子图或孙图的键在这里不可访问
return { myKey: "hi " + state.myKey };
})
.addNode("child", async (state) => {
const childGraphInput = { myChildKey: state.myKey }; // (4)!
const childGraphOutput = await childGraph.invoke(childGraphInput);
return { myKey: childGraphOutput.myChildKey }; // (5)!
}) // (6)!
.addNode("parent2", (state) => {
return { myKey: state.myKey + " bye!" };
})
.addEdge(START, "parent1")
.addEdge("parent1", "child")
.addEdge("child", "parent2")
.addEdge("parent2", END);
const parentGraph = parent.compile();
for await (const chunk of await parentGraph.stream(
{ myKey: "Bob" },
{ subgraphs: true }
)) {
console.log(chunk);
}
- 我们将状态从子图状态通道(
myChildKey)转换为孙图状态通道(myGrandchildKey) - 我们将状态从孙图状态通道(
myGrandchildKey)转换回子图状态通道(myChildKey) - 我们在这里传递一个函数而不是直接传递编译后的图(
grandchildGraph) - 我们将状态从父图状态通道(
myKey)转换为子图状态通道(myChildKey) - 我们将状态从子图状态通道(
myChildKey)转换回父图状态通道(myKey) - 我们在这里传递一个函数而不是直接传递编译后的图(
childGraph)
[[], { parent1: { myKey: 'hi Bob' } }]
[['child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b', 'child1:781bb3b1-3971-84ce-810b-acf819a03f9c'], { grandchild1: { myGrandchildKey: 'hi Bob, how are you' } }]
[['child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b'], { child1: { myChildKey: 'hi Bob, how are you today?' } }]
[[], { child: { myKey: 'hi Bob, how are you today?' } }]
[[], { parent2: { myKey: 'hi Bob, how are you today? bye!' } }]
添加持久化¶
你只需要 在编译父图时提供检查点器。LangGraph 会自动将检查点器传播到子图。
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from typing_extensions import TypedDict
class State(TypedDict):
foo: str
# 子图
def subgraph_node_1(state: State):
return {"foo": state["foo"] + "bar"}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# 父图
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)
import { StateGraph, START, MemorySaver } from "@langchain/langgraph";
import { z } from "zod";
const State = z.object({
foo: z.string(),
});
// 子图
const subgraphBuilder = new StateGraph(State)
.addNode("subgraphNode1", (state) => {
return { foo: state.foo + "bar" };
})
.addEdge(START, "subgraphNode1");
const subgraph = subgraphBuilder.compile();
// 父图
const builder = new StateGraph(State)
.addNode("node1", subgraph)
.addEdge(START, "node1");
const checkpointer = new MemorySaver();
const graph = builder.compile({ checkpointer });
如果你希望子图 拥有自己的记忆,可以使用适当的检查点器选项编译它。这在 多智能代理 系统中很有用,如果你希望智能代理跟踪它们的内部消息历史:
const subgraphBuilder = new StateGraph(...)
const subgraph = subgraphBuilder.compile({ checkpointer: true });
查看子图状态¶
当你启用 持久化 时,你可以通过适当的方法 检查图状态(检查点)。要查看子图状态,可以使用 subgraphs 选项。
你可以通过 graph.get_state(config) 检查图状态。要查看子图状态,可以使用 graph.get_state(config, subgraphs=True)。
你可以通过 graph.getState(config) 检查图状态。要查看子图状态,可以使用 graph.getState(config, { subgraphs: true })。
仅在中断时可用
子图状态只能在 子图被中断时 查看。一旦恢复图,你将无法访问子图状态。
查看中断的子图状态
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from langgraph.types import interrupt, Command
from typing_extensions import TypedDict
class State(TypedDict):
foo: str
# 子图
def subgraph_node_1(state: State):
value = interrupt("Provide value:")
return {"foo": state["foo"] + value}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# 父图
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"foo": ""}, config)
parent_state = graph.get_state(config)
subgraph_state = graph.get_state(config, subgraphs=True).tasks[0].state # (1)!
# 恢复子图
graph.invoke(Command(resume="bar"), config)
- 这只在子图被中断时可用。一旦恢复图,你将无法访问子图状态。
import { StateGraph, START, MemorySaver, interrupt, Command } from "@langchain/langgraph";
import { z } from "zod";
const State = z.object({
foo: z.string(),
});
// 子图
const subgraphBuilder = new StateGraph(State)
.addNode("subgraphNode1", (state) => {
const value = interrupt("Provide value:");
return { foo: state.foo + value };
})
.addEdge(START, "subgraphNode1");
const subgraph = subgraphBuilder.compile();
// 父图
const builder = new StateGraph(State)
.addNode("node1", subgraph)
.addEdge(START, "node1");
const checkpointer = new MemorySaver();
const graph = builder.compile({ checkpointer });
const config = { configurable: { thread_id: "1" } };
await graph.invoke({ foo: "" }, config);
const parentState = await graph.getState(config);
const subgraphState = (await graph.getState(config, { subgraphs: true })).tasks[0].state; // (1)!
// 恢复子图
await graph.invoke(new Command({ resume: "bar" }), config);
- 这只在子图被中断时可用。一旦恢复图,你将无法访问子图状态。
流式传输子图输出¶
要在流式输出中包含子图的输出,你可以在父图的 stream 方法中设置 subgraphs 选项。这将流式传输父图和任何子图的输出。
for chunk in graph.stream(
{"foo": "foo"},
subgraphs=True, # (1)!
stream_mode="updates",
):
print(chunk)
- 设置
subgraphs=True以流式传输子图的输出。
for await (const chunk of await graph.stream(
{ foo: "foo" },
{
subgraphs: true, // (1)!
streamMode: "updates",
}
)) {
console.log(chunk);
}
- 设置
subgraphs: true以流式传输子图的输出。
从子图流式传输
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# 定义子图
class SubgraphState(TypedDict):
foo: str
bar: str
def subgraph_node_1(state: SubgraphState):
return {"bar": "bar"}
def subgraph_node_2(state: SubgraphState):
# 注意这个节点使用的状态键('bar')只在子图中可用
# 并且在共享状态键('foo')上发送更新
return {"foo": state["foo"] + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# 定义父图
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream(
{"foo": "foo"},
stream_mode="updates",
subgraphs=True, # (1)!
):
print(chunk)
- 设置
subgraphs=True以流式传输子图的输出。
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_1': {'bar': 'bar'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_2': {'foo': 'hi! foobar'}})
((), {'node_2': {'foo': 'hi! foobar'}})
import { StateGraph, START } from "@langchain/langgraph";
import { z } from "zod";
// 定义子图
const SubgraphState = z.object({
foo: z.string(),
bar: z.string(),
});
const subgraphBuilder = new StateGraph(SubgraphState)
.addNode("subgraphNode1", (state) => {
return { bar: "bar" };
})
.addNode("subgraphNode2", (state) => {
// 注意这个节点使用的状态键('bar')只在子图中可用
// 并且在共享状态键('foo')上发送更新
return { foo: state.foo + state.bar };
})
.addEdge(START, "subgraphNode1")
.addEdge("subgraphNode1", "subgraphNode2");
const subgraph = subgraphBuilder.compile();
// 定义父图
const ParentState = z.object({
foo: z.string(),
});
const builder = new StateGraph(ParentState)
.addNode("node1", (state) => {
return { foo: "hi! " + state.foo };
})
.addNode("node2", subgraph)
.addEdge(START, "node1")
.addEdge("node1", "node2");
const graph = builder.compile();
for await (const chunk of await graph.stream(
{ foo: "foo" },
{
streamMode: "updates",
subgraphs: true, // (1)!
}
)) {
console.log(chunk);
}
- 设置
subgraphs: true以流式传输子图的输出。