跳转至

多智能体监督系统

监督系统是一种多智能体架构,其中**专门化**的智能体由中央**监督智能体**协调。监督智能体控制所有通信流程和任务委派,根据当前上下文和任务需求决定调用哪个智能体。

在本教程中,你将构建一个包含两个智能体的监督系统——研究智能体和数学专家智能体。在教程结束时,你将:

  1. 构建专门化的研究和数学智能体
  2. 使用预构建的 langgraph-supervisor 构建监督系统来编排它们
  3. 从零开始构建监督系统
  4. 实现高级任务委派

diagram

设置

首先,让我们安装所需的包并设置我们的 API 密钥

%%capture --no-stderr
%pip install -U langgraph langgraph-supervisor langchain-tavily "langchain[openai]"
import getpass
import os


def _set_if_undefined(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"Please provide your {var}")


_set_if_undefined("OPENAI_API_KEY")
_set_if_undefined("TAVILY_API_KEY")

Tip

注册 LangSmith 以快速发现问题并提高 LangGraph 项目的性能。LangSmith 让你可以使用追踪数据来调试、测试和监控用 LangGraph 构建的 LLM 应用程序。

1. 创建工作智能体

首先,让我们创建我们的专门化工作智能体——研究智能体和数学智能体:

  • 研究智能体将使用 Tavily API 访问网页搜索工具
  • 数学智能体将访问简单的数学工具(addmultiplydivide

研究智能体

对于网页搜索,我们将使用 langchain-tavily 中的 TavilySearch 工具:

from langchain_tavily import TavilySearch

web_search = TavilySearch(max_results=3)
web_search_results = web_search.invoke("who is the mayor of NYC?")

print(web_search_results["results"][0]["content"])

输出:

Find events, attractions, deals, and more at nyctourism.com Skip Main Navigation Menu The Official Website of the City of New York Text Size Powered by Translate SearchSearch Primary Navigation The official website of NYC Home NYC Resources NYC311 Office of the Mayor Events Connect Jobs Search Office of the Mayor | Mayor's Bio | City of New York Secondary Navigation MayorBiographyNewsOfficials Eric L. Adams 110th Mayor of New York City Mayor Eric Adams has served the people of New York City as an NYPD officer, State Senator, Brooklyn Borough President, and now as the 110th Mayor of the City of New York. Mayor Eric Adams has served the people of New York City as an NYPD officer, State Senator, Brooklyn Borough President, and now as the 110th Mayor of the City of New York. He gave voice to a diverse coalition of working families in all five boroughs and is leading the fight to bring back New York City's economy, reduce inequality, improve public safety, and build a stronger, healthier city that delivers for all New Yorkers. As the representative of one of the nation's largest counties, Eric fought tirelessly to grow the local economy, invest in schools, reduce inequality, improve public safety, and advocate for smart policies and better government that delivers for all New Yorkers.

要创建单独的工作智能体,我们将使用 LangGraph 的预构建 agent

from langgraph.prebuilt import create_react_agent

research_agent = create_react_agent(
    model="openai:gpt-4.1",
    tools=[web_search],
    prompt=(
        "You are a research agent.\n\n"
        "INSTRUCTIONS:\n"
        "- Assist ONLY with research-related tasks, DO NOT do any math\n"
        "- After you're done with your tasks, respond to the supervisor directly\n"
        "- Respond ONLY with the results of your work, do NOT include ANY other text."
    ),
    name="research_agent",
)

让我们运行智能体来验证它的行为符合预期。

我们将使用 pretty_print_messages 辅助函数来更好地渲染流式输出的智能体输出

from langchain_core.messages import convert_to_messages


def pretty_print_message(message, indent=False):
    pretty_message = message.pretty_repr(html=True)
    if not indent:
        print(pretty_message)
        return

    indented = "\n".join("\t" + c for c in pretty_message.split("\n"))
    print(indented)


def pretty_print_messages(update, last_message=False):
    is_subgraph = False
    if isinstance(update, tuple):
        ns, update = update
        # 在打印输出中跳过父图更新
        if len(ns) == 0:
            return

        graph_id = ns[-1].split(":")[0]
        print(f"Update from subgraph {graph_id}:")
        print("\n")
        is_subgraph = True

    for node_name, node_update in update.items():
        update_label = f"Update from node {node_name}:"
        if is_subgraph:
            update_label = "\t" + update_label

        print(update_label)
        print("\n")

        messages = convert_to_messages(node_update["messages"])
        if last_message:
            messages = messages[-1:]

        for m in messages:
            pretty_print_message(m, indent=is_subgraph)
        print("\n")
for chunk in research_agent.stream(
    {"messages": [{"role": "user", "content": "who is the mayor of NYC?"}]}
):
    pretty_print_messages(chunk)

输出:

Update from node agent:


================================== Ai Message ==================================
Name: research_agent
Tool Calls:
  tavily_search (call_U748rQhQXT36sjhbkYLSXQtJ)
 Call ID: call_U748rQhQXT36sjhbkYLSXQtJ
  Args:
    query: current mayor of New York City
    search_depth: basic


Update from node tools:


================================= Tool Message ==================================
Name: tavily_search

{"query": "current mayor of New York City", "follow_up_questions": null, "answer": null, "images": [], "results": [{"title": "List of mayors of New York City - Wikipedia", "url": "https://en.wikipedia.org/wiki/List_of_mayors_of_New_York_City", "content": "The mayor of New York City is the chief executive of the Government of New York City, as stipulated by New York City's charter.The current officeholder, the 110th in the sequence of regular mayors, is Eric Adams, a member of the Democratic Party.. During the Dutch colonial period from 1624 to 1664, New Amsterdam was governed by the Director of Netherland.", "score": 0.9039154, "raw_content": null}, {"title": "Office of the Mayor | Mayor's Bio | City of New York - NYC.gov", "url": "https://www.nyc.gov/office-of-the-mayor/bio.page", "content": "Mayor Eric Adams has served the people of New York City as an NYPD officer, State Senator, Brooklyn Borough President, and now as the 110th Mayor of the City of New York. He gave voice to a diverse coalition of working families in all five boroughs and is leading the fight to bring back New York City's economy, reduce inequality, improve", "score": 0.8405867, "raw_content": null}, {"title": "Eric Adams - Wikipedia", "url": "https://en.wikipedia.org/wiki/Eric_Adams", "content": "Eric Leroy Adams (born September 1, 1960) is an American politician and former police officer who has served as the 110th mayor of New York City since 2022. Adams was an officer in the New York City Transit Police and then the New York City Police Department (```

数学智能体

对于数学智能体工具,我们将使用纯 Python 函数

def add(a: float, b: float):
    """Add two numbers."""
    return a + b


def multiply(a: float, b: float):
    """Multiply two numbers."""
    return a * b


def divide(a: float, b: float):
    """Divide two numbers."""
    return a / b


math_agent = create_react_agent(
    model="openai:gpt-4.1",
    tools=[add, multiply, divide],
    prompt=(
        "You are a math agent.\n\n"
        "INSTRUCTIONS:\n"
        "- Assist ONLY with math-related tasks\n"
        "- After you're done with your tasks, respond to the supervisor directly\n"
        "- Respond ONLY with the results of your work, do NOT include ANY other text."
    ),
    name="math_agent",
)

让我们运行数学智能体:

for chunk in math_agent.stream(
    {"messages": [{"role": "user", "content": "what's (3 + 5) x 7"}]}
):
    pretty_print_messages(chunk)

输出:

Update from node agent:


================================== Ai Message ==================================
Name: math_agent
Tool Calls:
  add (call_p6OVLDHB4LyCNCxPOZzWR15v)
 Call ID: call_p6OVLDHB4LyCNCxPOZzWR15v
  Args:
    a: 3
    b: 5


Update from node tools:


================================= Tool Message ==================================
Name: add

8.0


Update from node agent:


================================== Ai Message ==================================
Name: math_agent
Tool Calls:
  multiply (call_EoaWHMLFZAX4AkajQCtZvbli)
 Call ID: call_EoaWHMLFZAX4AkajQCtZvbli
  Args:
    a: 8
    b: 7


Update from node tools:


================================= Tool Message ==================================
Name: multiply

56.0


Update from node agent:


================================== Ai Message ==================================
Name: math_agent

56

2. 使用 langgraph-supervisor 创建监督系统

要实现我们的多智能体系统,我们将使用预构建的 langgraph-supervisor 库中的 @[create_supervisor][]:

from langgraph_supervisor import create_supervisor
from langchain.chat_models import init_chat_model

supervisor = create_supervisor(
    model=init_chat_model("openai:gpt-4.1"),
    agents=[research_agent, math_agent],
    prompt=(
        "You are a supervisor managing two agents:\n"
        "- a research agent. Assign research-related tasks to this agent\n"
        "- a math agent. Assign math-related tasks to this agent\n"
        "Assign work to one agent at a time, do not call agents in parallel.\n"
        "Do not do any work yourself."
    ),
    add_handoff_back_messages=True,
    output_mode="full_history",
).compile()
from IPython.display import display, Image

display(Image(supervisor.get_graph().draw_mermaid_png()))

Graph

注意: 当你运行这段代码时,它将生成并显示监督系统图的可视化表示,展示监督者和工作智能体之间的流程。

现在让我们用一个需要两个智能体的查询来运行它:

  • 研究智能体将查找必要的 GDP 信息
  • 数学智能体将执行除法以找出纽约州 GDP 的百分比,如所请求的
for chunk in supervisor.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": "find US and New York state GDP in 2024. what % of US GDP was New York state?",
            }
        ]
    },
):
    pretty_print_messages(chunk, last_message=True)

final_message_history = chunk["supervisor"]["messages"]

输出:

Update from node supervisor:


================================= Tool Message ==================================
Name: transfer_to_research_agent

成功转接到 research_agent


Update from node research_agent:


================================= Tool Message ==================================
Name: transfer_back_to_supervisor

成功转回 supervisor


Update from node supervisor:


================================= Tool Message ==================================
Name: transfer_to_math_agent

成功转接到 math_agent


Update from node math_agent:


================================= Tool Message ==================================
Name: transfer_back_to_supervisor

成功转回 supervisor


Update from node supervisor:


================================== Ai Message ==================================
Name: supervisor

In 2024, the US GDP was $29.18 trillion and New York State's GDP was $2.297 trillion. New York State accounted for approximately 7.87% of the total US GDP in 2024.

3. 从零开始创建监督系统

现在让我们从零开始实现同样的多智能体系统。我们需要:

  1. 设置监督者如何与各个智能体通信
  2. 创建监督智能体
  3. 将监督者和工作智能体组合成一个单一的多智能体图

设置智能体通信

我们需要定义监督智能体与工作智能体通信的方式。在多智能体架构中实现这一点的常见方式是使用**交接(handoffs)**,其中一个智能体将控制权*交接*给另一个智能体。交接允许你指定:

  • destination(目标):要转移到的目标智能体
  • payload(负载):传递给该智能体的信息

我们将通过**交接工具**实现交接,并将这些工具提供给监督智能体:当监督者调用这些工具时,它将把控制权交接给工作智能体,并将完整的消息历史传递给该智能体。

from typing import Annotated
from langchain_core.tools import tool, InjectedToolCallId
from langgraph.prebuilt import InjectedState
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.types import Command


def create_handoff_tool(*, agent_name: str, description: str | None = None):
    name = f"transfer_to_{agent_name}"
    description = description or f"Ask {agent_name} for help."

    @tool(name, description=description)
    def handoff_tool(
        state: Annotated[MessagesState, InjectedState],
        tool_call_id: Annotated[str, InjectedToolCallId],
    ) -> Command:
        tool_message = {
            "role": "tool",
            "content": f"Successfully transferred to {agent_name}",
            "name": name,
            "tool_call_id": tool_call_id,
        }
        # highlight-next-line
        return Command(
            # highlight-next-line
            goto=agent_name,  # (1)!
            # highlight-next-line
            update={**state, "messages": state["messages"] + [tool_message]},  # (2)!
            # highlight-next-line
            graph=Command.PARENT,  # (3)!
        )

    return handoff_tool


# Handoffs
assign_to_research_agent = create_handoff_tool(
    agent_name="research_agent",
    description="Assign task to a researcher agent.",
)

assign_to_math_agent = create_handoff_tool(
    agent_name="math_agent",
    description="Assign task to a math agent.",
)
  1. 要交接到的智能体或节点的名称。
  2. 获取智能体的消息并将它们添加到父级状态,作为交接的一部分。下一个智能体将看到父级状态。
  3. 向 LangGraph 指示我们需要导航到**父级**多智能体图中的智能体节点。

创建监督智能体

然后,让我们使用我们刚刚定义的交接工具创建监督智能体。我们将使用预构建的 @[create_react_agent][]:

supervisor_agent = create_react_agent(
    model="openai:gpt-4.1",
    tools=[assign_to_research_agent, assign_to_math_agent],
    prompt=(
        "You are a supervisor managing two agents:\n"
        "- a research agent. Assign research-related tasks to this agent\n"
        "- a math agent. Assign math-related tasks to this agent\n"
        "Assign work to one agent at a time, do not call agents in parallel.\n"
        "Do not do any work yourself."
    ),
    name="supervisor",
)

创建多智能体图

综合所有内容,让我们为整个多智能体系统创建一个图。我们将监督者和各个智能体作为子图节点添加。

from langgraph.graph import END

# 定义多智能体监督系统图
supervisor = (
    StateGraph(MessagesState)
    # 注意:`destinations` 仅用于可视化,不影响运行时行为
    .add_node(supervisor_agent, destinations=("research_agent", "math_agent", END))
    .add_node(research_agent)
    .add_node(math_agent)
    .add_edge(START, "supervisor")
    # 始终返回到监督者
    .add_edge("research_agent", "supervisor")
    .add_edge("math_agent", "supervisor")
    .compile()
)

注意,我们从工作智能体添加了显式的返回到监督者——这意味着它们保证将控制权返回给监督者。如果你希望智能体直接响应用户(即将系统转变为路由器),你可以删除这些边。

from IPython.display import display, Image

display(Image(supervisor.get_graph().draw_mermaid_png()))

Graph

注意: 当你运行这段代码时,它将生成并显示多智能体监督系统图的可视化表示,展示监督者和工作智能体之间的流程。

创建好多智能体图后,现在让我们运行它!

for chunk in supervisor.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": "find US and New York state GDP in 2024. what % of US GDP was New York state?",
            }
        ]
    },
):
    pretty_print_messages(chunk, last_message=True)

final_message_history = chunk["supervisor"]["messages"]

输出:

Update from node supervisor:


================================= Tool Message ==================================
Name: transfer_to_research_agent

成功转接到 research_agent


Update from node research_agent:


================================== Ai Message ==================================
Name: research_agent

- US GDP in 2024 is projected to be about $28.18 trillion USD (Statista; CBO projection).
- New York State's nominal GDP for 2024 is estimated at approximately $2.16 trillion USD (various economic reports).
- New York State's share of US GDP in 2024 is roughly 7.7%.

Sources:
- https://www.statista.com/statistics/216985/forecast-of-us-gross-domestic-product/
- https://nyassembly.gov/Reports/WAM/2025economic_revenue/2025_report.pdf?v=1740533306


Update from node supervisor:


================================= Tool Message ==================================
Name: transfer_to_math_agent

成功转接到 math_agent


Update from node math_agent:


================================== Ai Message ==================================
Name: math_agent

US GDP in 2024: $28.18 trillion
New York State GDP in 2024: $2.16 trillion
Percentage of US GDP from New York State: 7.67%


Update from node supervisor:


================================== Ai Message ==================================
Name: supervisor

Here are your results:

- 2024 US GDP (projected): $28.18 trillion USD
- 2024 New York State GDP (estimated): $2.16 trillion USD
- New York State's share of US GDP: approximately 7.7%

If you need the calculation steps or sources, let me know!

让我们检查完整的结果消息历史:

for message in final_message_history:
    message.pretty_print()

输出:

================================ Human Message ==================================

find US and New York state GDP in 2024. what % of US GDP was New York state?
================================== Ai Message ===================================
Name: supervisor
Tool Calls:
  transfer_to_research_agent (call_KlGgvF5ahlAbjX8d2kHFjsC3)
 Call ID: call_KlGgvF5ahlAbjX8d2kHFjsC3
  Args:
================================= Tool Message ==================================
Name: transfer_to_research_agent

成功转接到 research_agent
================================== Ai Message ===================================
Name: research_agent
Tool Calls:
  tavily_search (call_ZOaTVUA6DKrOjWQldLhtrsO2)
 Call ID: call_ZOaTVUA6DKrOjWQldLhtrsO2
  Args:
    query: US GDP 2024 estimate or actual
    search_depth: advanced
  tavily_search (call_QsRAasxW9K03lTlqjuhNLFbZ)
 Call ID: call_QsRAasxW9K03lTlqjuhNLFbZ
  Args:
    query: New York state GDP 2024 estimate or actual
    search_depth: advanced
================================= Tool Message ==================================
Name: tavily_search

{"query": "US GDP 2024 estimate or actual", "follow_up_questions": null, "answer": null, "images": [], "results": [{"url": "https://www.advisorperspectives.com/dshort/updates/2025/05/29/gdp-gross-domestic-product-q1-2025-second-estimate", "title": "Q1 GDP Second Estimate: Real GDP at -0.2%, Higher Than Expected", "content": "> Real gross domestic product (GDP) decreased at an annual rate of 0.2 percent in the first quarter of 2025 (January, February, and March), according to the second estimate released by the U.S. Bureau of Economic Analysis. In the fourth quarter of 2024, real GDP increased 2.4 percent. The decrease in real GDP in the first quarter primarily reflected an increase in imports, which are a subtraction in the calculation of GDP, and a decrease in government spending. These movements were partly [...] by [Harry Mamaysky](https://www.advisor```

Important

你可以看到,监督系统将**所有**各个智能体的消息(即它们内部的工具调用循环)附加到完整的消息历史中。这意味着在每一轮监督者的操作中,监督智能体都能看到这个完整的历史。如果你想更精确地控制:

  • 如何将输入传递给智能体:你可以使用 LangGraph @[Send()][Send] 原语在交接期间直接发送数据给工作智能体。请参阅下面的任务委派示例
  • 如何添加智能体输出:你可以通过将智能体包装在单独的节点函数中来控制将多少智能体的内部消息历史添加到整体监督者消息历史中:

    def call_research_agent(state):
        # 返回智能体的最终响应,
        # 排除内部独白
        response = research_agent.invoke(state)
        # highlight-next-line
        return {"messages": response["messages"][-1]}
    

4. 创建委派任务

到目前为止,各个智能体依赖于**解释完整的消息历史**来确定它们的任务。另一种方法是让监督者**明确制定任务**。我们可以通过向 handoff_tool 函数添加 task_description 参数来实现。

from langgraph.types import Send


def create_task_description_handoff_tool(
    *, agent_name: str, description: str | None = None
):
    name = f"transfer_to_{agent_name}"
    description = description or f"Ask {agent_name} for help."

    @tool(name, description=description)
    def handoff_tool(
        # 这由监督者 LLM 填充
        task_description: Annotated[
            str,
            "Description of what the next agent should do, including all of the relevant context.",
        ],
        # 这些参数被 LLM 忽略
        state: Annotated[MessagesState, InjectedState],
    ) -> Command:
        task_description_message = {"role": "user", "content": task_description}
        agent_input = {**state, "messages": [task_description_message]}
        return Command(
            # highlight-next-line
            goto=[Send(agent_name, agent_input)],
            graph=Command.PARENT,
        )

    return handoff_tool


assign_to_research_agent_with_description = create_task_description_handoff_tool(
    agent_name="research_agent",
    description="Assign task to a researcher agent.",
)

assign_to_math_agent_with_description = create_task_description_handoff_tool(
    agent_name="math_agent",
    description="Assign task to a math agent.",
)

supervisor_agent_with_description = create_react_agent(
    model="openai:gpt-4.1",
    tools=[
        assign_to_research_agent_with_description,
        assign_to_math_agent_with_description,
    ],
    prompt=(
        "You are a supervisor managing two agents:\n"
        "- a research agent. Assign research-related tasks to this assistant\n"
        "- a math agent. Assign math-related tasks to this assistant\n"
        "Assign work to one agent at a time, do not call agents in parallel.\n"
        "Do not do any work yourself."
    ),
    name="supervisor",
)

supervisor_with_description = (
    StateGraph(MessagesState)
    .add_node(
        supervisor_agent_with_description, destinations=("research_agent", "math_agent")
    )
    .add_node(research_agent)
    .add_node(math_agent)
    .add_edge(START, "supervisor")
    .add_edge("research_agent", "supervisor")
    .add_edge("math_agent", "supervisor")
    .compile()
)

Note

我们在 handoff_tool 中使用了 @[Send()][Send] 原语。这意味着每个工作智能体不会接收完整的 supervisor 图状态作为输入,而是只看到 Send 负载的内容。在此示例中,我们将任务描述作为单个"human"消息发送。

现在让我们用同样的输入查询运行它:

for chunk in supervisor_with_description.stream(
    {
        "messages": [
            {
                "role": "user",
                "content": "find US and New York state GDP in 2024. what % of US GDP was New York state?",
            }
        ]
    },
    subgraphs=True,
):
    pretty_print_messages(chunk, last_message=True)

输出:

Update from subgraph supervisor:


    Update from node agent:


    ================================== Ai Message ==================================
    Name: supervisor
    Tool Calls:
      transfer_to_research_agent (call_tk8q8py8qK6MQz6Kj6mijKua)
     Call ID: call_tk8q8py8qK6MQz6Kj6mijKua
      Args:
        task_description: Find the 2024 GDP (Gross Domestic Product) for both the United States and New York state, using the most up-to-date and reputable sources available. Provide both GDP values and cite the data sources.


Update from subgraph research_agent:


    Update from node agent:


    ================================== Ai Message ==================================
    Name: research_agent
    Tool Calls:
      tavily_search (call_KqvhSvOIhAvXNsT6BOwbPlRB)
     Call ID: call_KqvhSvOIhAvXNsT6BOwbPlRB
      Args:
        query: 2024 United States GDP value from a reputable source
        search_depth: advanced
      tavily_search (call_kbbAWBc9KwCWKHmM5v04H88t)
     Call ID: call_kbbAWBc9KwCWKHmM5v04H88t
      Args:
        query: 2024 New York state GDP value from a reputable source
        search_depth: advanced


Update from subgraph research_agent:


    Update from node tools:


    ================================= Tool Message ==================================
    Name: tavily_search

    {"query": "2024 United States GDP value from a reputable source", "follow_up_questions": null, "answer": null, "images": [], "results": [{"url": "https://www.focus-economics.com/countries/united-states/", "title": "United States Economy Overview - Focus Economics", "content": "The United States' Macroeconomic Analysis:\n------------------------------------------\n\n**Nominal GDP of USD 29,185 billion in 2024.**\n\n**Nominal GDP of USD 29,179 billion in 2024.**\n\n**GDP per capita of USD 86,635 compared to the global average of USD 10,589.**\n\n**GDP per capita of USD 86,652 compared to the global average of USD 10,589.**\n\n**Average real GDP growth of 2.5% over the last decade.**\n\n**Average real GDP growth of ```